Attribution Model Auditor
SKILL.md
HOW_TO_USE.md
sample_input.json
expected_output.json
skillsmeasurementSKILL.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# Attribution Model Auditor
If you can't measure it, you can't improve it. But are you measuring it right?
## Core Philosophy
**All attribution is wrong. Some is useful.** The goal isn't perfect measurementβit's consistent, directional decision-making.
**The Attribution Paradox:** The more sophisticated your marketing, the harder it is to attribute. Multi-touch journeys break simple models.
**The Three Truths of Attribution:**
1. **Platform data is biased:** Every platform claims credit for everything it can
2. **Last-click is lazy:** But it's consistent and actionable
3. **Perfect attribution doesn't exist:** Pick a model and optimize consistently
---
## Required Context
### Must Have
**1. Current Attribution Setup**
- Platforms running ads (Google, Meta, TikTok, etc.)
- Attribution windows by platform
- Conversion tracking method (pixel, CAPI, offline)
**2. Conversion Data**
- Reported conversions by platform
- Actual conversions (from CRM/backend)
- Discrepancy if known
**3. Business Model**
- Conversion type (purchase, lead, signup)
- Sales cycle length
- Online vs. offline conversion
### Strongly Recommended
**4. Technical Setup**
- Pixels/tags installed
- CAPI/server-side tracking status
- UTM parameter usage
- GA4 setup
**5. Cross-Platform Comparison**
- Same-period conversions by platform
- Total actual conversions
- Sum vs. actual (overlap indicator)
### Nice to Have
- Historical tracking changes
- iOS14+ impact observations
- Multi-touch path data
- CRM integration status
---
## Attribution Audit Framework
### Level 1: Technical Setup Audit
**Tracking Method Assessment:**
| Method | Reliability | iOS Resilience | Setup Complexity |
|--------|-------------|----------------|------------------|
| Platform Pixel (browser) | Medium | Low | Easy |
| Platform Pixel + CAPI | High | High | Medium |
| CAPI only | High | High | Complex |
| GA4 + Platform | Medium-High | Medium | Medium |
| Offline Import | High | High | Complex |
**Essential Tracking Checklist:**
| Element | Status | Impact if Missing |
|---------|--------|-------------------|
| Meta Pixel | Required | No Meta conversion tracking |
| Meta CAPI | Strongly Rec | 20-30% data loss on iOS |
| Google Ads Tag | Required | No Google conversion tracking |
| Google Enhanced Conversions | Strongly Rec | Better matching, especially email |
| GA4 | Strongly Rec | No cross-platform view |
| UTM Parameters | Required | Can't attribute in GA4 |
| Offline Import | For leads | CRM data not connected |
---
### Level 2: Attribution Window Analysis
**Platform Default Windows:**
| Platform | Default Click | Default View | Adjustable? |
|----------|---------------|--------------|-------------|
| Google Ads | 30 days | 1 day (display) | Yes |
| Meta Ads | 7 days | 1 day | Yes |
| TikTok | 28 days | 7 days | Yes |
| LinkedIn | 30 days | 7 days | Yes |
| Microsoft | 30 days | 1 day | Yes |
**Window Mismatch Issues:**
| Scenario | Problem | Solution |
|----------|---------|----------|
| Different windows across platforms | Unfair comparison | Standardize where possible |
| Window longer than sales cycle | Over-attribution | Shorten window |
| Window shorter than sales cycle | Under-attribution | Lengthen or use offline import |
| View-through counting | Inflated Meta/TikTok | Consider 7d click only |
---
### Level 3: Platform Comparison Analysis
**Sum vs. Actual Analysis:**
```
Platform A reported: 100 conversions
Platform B reported: 80 conversions
Platform C reported: 50 conversions
---------------------------------
Sum of platforms: 230 conversions
Actual (CRM): 150 conversions
---------------------------------
Overcounting: 53% ((230-150)/150)
```
**Overcounting Interpretation:**
| Overcounting % | Interpretation | Action |
|----------------|----------------|--------|
| <10% | Normal | Minor overlap |
| 10-30% | Moderate | Review attribution windows |
| 30-50% | High | Significant double-counting |
| >50% | Severe | Attribution fundamentally broken |
---
### Level 4: Model Comparison
**Attribution Models Explained:**
| Model | Credit Allocation | Best For | Limitation |
|-------|-------------------|----------|------------|
| Last Click | 100% to last ad clicked | Direct response | Ignores awareness |
| First Click | 100% to first ad clicked | Brand campaigns | Ignores conversion |
| Linear | Equal across touchpoints | Balanced view | May overvalue low-impact |
| Time Decay | More to recent touches | Long sales cycles | Complex to action |
| Position-Based | 40% first, 40% last, 20% middle | Balanced | Arbitrary weights |
| Data-Driven | ML-weighted | Mature accounts | Needs volume |
**Model Selection Framework:**
| Business Type | Sales Cycle | Recommended Model |
|---------------|-------------|-------------------|
| E-commerce DTC | Short (<7 days) | Last Click or 7-day window |
| SaaS B2C | Medium (7-30 days) | 30-day click, position-based |
| B2B Lead Gen | Long (30-90+ days) | First Click + Offline import |
| Brand campaigns | N/A | Multi-touch or MMM |
---
### Level 5: Data Loss Assessment
**iOS 14+ Impact Checklist:**
| Factor | Pre-iOS 14 | Post-iOS 14 | Mitigation |
|--------|------------|-------------|------------|
| Meta tracking | ~95% | 70-80% | CAPI required |
| TikTok tracking | ~90% | 65-75% | CAPI required |
| Google tracking | ~90% | 85-90% | Enhanced Conversions |
| Cross-device | Good | Degraded | Customer data matching |
**CAPI Implementation Check:**
| Platform | CAPI Available? | Event Match Quality | Status |
|----------|-----------------|---------------------|--------|
| Meta | Yes | [X]% | [Good/Poor] |
| TikTok | Yes | [X]% | [Good/Poor] |
| Google | Enhanced Conv. | [Match rate] | [Good/Poor] |
| LinkedIn | Limited | N/A | [Status] |
---
### Level 6: Measurement Framework Recommendation
**Framework Levels:**
| Level | Components | Best For | Complexity |
|-------|------------|----------|------------|
| Basic | Platform pixels + UTMs + GA4 | Small spend (<$10K/mo) | Low |
| Intermediate | + CAPI + CRM integration | Medium spend ($10-100K/mo) | Medium |
| Advanced | + Offline import + data warehouse | Large spend ($100K+/mo) | High |
| Sophisticated | + MMM + Incrementality testing | Enterprise | Very High |
---
## Output Format
### Attribution Audit Report
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ATTRIBUTION MODEL AUDIT
Platforms Audited: [Platforms]
Analysis Period: [Date Range]
Overall Attribution Health: [GOOD/NEEDS WORK/CRITICAL]
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
---
### Executive Summary
**Current Setup Assessment:**
| Area | Status | Priority |
|------|--------|----------|
| Technical Tracking | [Good/Fair/Poor] | [High/Med/Low] |
| Attribution Windows | [Aligned/Misaligned] | [High/Med/Low] |
| Cross-Platform Consistency | [Good/Fair/Poor] | [High/Med/Low] |
| Data Loss Mitigation | [Good/Fair/Poor] | [High/Med/Low] |
**Top Issues:**
1. [Issue] - [Impact]
2. [Issue] - [Impact]
3. [Issue] - [Impact]
**Recommended Actions:**
1. [Action] - [Expected improvement]
2. [Action] - [Expected improvement]
3. [Action] - [Expected improvement]
---
### Technical Setup Audit
**Tracking Coverage:**
| Platform | Pixel | CAPI/Enhanced | Offline Import | Status |
|----------|-------|---------------|----------------|--------|
| Google Ads | [Y/N] | [Y/N] | [Y/N] | [Status] |
| Meta | [Y/N] | [Y/N] | [Y/N] | [Status] |
| TikTok | [Y/N] | [Y/N] | [Y/N] | [Status] |
| LinkedIn | [Y/N] | [Limited] | [Y/N] | [Status] |
**GA4 Integration:**
- Connected: [Y/N]
- UTM tracking: [Consistent/Inconsistent]
- Cross-platform view: [Available/Not available]
**Issues Identified:**
| Issue | Impact | Priority | Fix |
|-------|--------|----------|-----|
| [Issue] | [Impact] | [Priority] | [Fix] |
---
### Attribution Window Analysis
**Current Windows:**
| Platform | Click Window | View Window | Assessment |
|----------|--------------|-------------|------------|
| Google | [X] days | [X] days | [Assessment] |
| Meta | [X] days | [X] days | [Assessment] |
| TikTok | [X] days | [X] days | [Assessment] |
| LinkedIn | [X] days | [X] days | [Assessment] |
**Sales Cycle Alignment:**
- Your sales cycle: [X] days
- Longest window: [X] days
- Shortest window: [X] days
- Assessment: [Aligned/Misaligned]
**Window Recommendations:**
| Platform | Current | Recommended | Rationale |
|----------|---------|-------------|-----------|
| [Platform] | [Current] | [Recommended] | [Why] |
---
### Cross-Platform Analysis
**Conversion Comparison:**
| Platform | Reported Conversions | % of Total Reported |
|----------|---------------------|---------------------|
| Google | [X] | [X]% |
| Meta | [X] | [X]% |
| TikTok | [X] | [X]% |
| LinkedIn | [X] | [X]% |
| **Total Reported** | [X] | - |
| **Actual (CRM)** | [X] | - |
| **Overcounting** | [X] | [X]% |
**Analysis:**
[Interpretation of overcounting and what it means]
**Overlap Sources:**
1. [Source of overlap]
2. [Source of overlap]
---
### Data Loss Assessment
**Estimated Data Loss:**
| Platform | Pre-iOS14 Accuracy | Current Accuracy | Gap |
|----------|-------------------|------------------|-----|
| Meta | ~95% | [X]% | [X]% |
| TikTok | ~90% | [X]% | [X]% |
| Google | ~90% | [X]% | [X]% |
**CAPI/Enhanced Conversion Status:**
| Platform | Implementation | Event Match Quality | Assessment |
|----------|----------------|---------------------|------------|
| Meta | [Status] | [X]% | [Good/Poor] |
| Google | [Status] | [Match rate] | [Good/Poor] |
| TikTok | [Status] | [X]% | [Good/Poor] |
**Data Recovery Recommendations:**
1. [Recommendation]
2. [Recommendation]
---
### Model Recommendation
**Current Model:** [Model]
**Recommended Model:** [Model]
**Rationale:**
- Your business type: [Type]
- Your sales cycle: [Length]
- Your main goal: [Goal]
- [Why recommended model fits]
**Implementation Notes:**
- [Note 1]
- [Note 2]
---
### Discrepancy Resolution
**Why Numbers Don't Match:**
| Discrepancy | Cause | Resolution |
|-------------|-------|------------|
| Platform A > CRM | [Cause] | [Resolution] |
| Platform B < Platform A | [Cause] | [Resolution] |
| Sum > Actual | [Cause] | [Resolution] |
**Establishing Source of Truth:**
Recommended hierarchy:
1. [Primary source] - Why
2. [Secondary source] - Why
3. [Platform data] - Use for optimization only
---
### Action Plan
**Immediate (This Week):**
1. [ ] [Technical fix]
2. [ ] [Configuration change]
**Short-Term (Next 2-4 Weeks):**
1. [ ] [Implementation]
2. [ ] [Integration]
**Medium-Term (Next 1-3 Months):**
1. [ ] [Advanced setup]
2. [ ] [Testing/validation]
---
### Monitoring Framework
**Weekly Checks:**
- [ ] Platform vs. CRM conversion delta
- [ ] Event Match Quality (Meta CAPI)
- [ ] GA4 cross-platform view
**Monthly Checks:**
- [ ] Attribution window performance review
- [ ] Overcounting trend
- [ ] Data loss assessment
**Red Flags:**
- Overcounting increases >10% month-over-month
- Event Match Quality drops below 70%
- Platform data diverges >50% from CRM
---
## Common Attribution Problems
### Problem 1: Platforms Sum to 2x Actual
**Cause:** View-through attribution, long windows, multi-platform journeys
**Solution:**
- Standardize to click-only attribution for comparison
- Shorten windows to match sales cycle
- Accept overlap and use platform data for platform optimization only
### Problem 2: Meta Shows 50% Fewer Conversions Than Before
**Cause:** iOS 14 privacy changes, lack of CAPI
**Solution:**
- Implement CAPI with Conversions API Gateway or direct integration
- Use Aggregated Event Measurement properly
- Consider Conversion Lift studies for validation
### Problem 3: Can't Compare Platforms Fairly
**Cause:** Different windows, different models, different tracking
**Solution:**
- Standardize windows (e.g., all 7-day click)
- Use GA4 as neutral source
- Focus on incrementality, not attribution
### Problem 4: CRM Shows Leads, Platforms Show Purchases
**Cause:** Different conversion events tracked
**Solution:**
- Audit conversion events across platforms
- Ensure same event is tracked everywhere
- Set up offline import for lead-to-customer tracking
---
## Limitations
**I can provide:**
- Attribution setup audit
- Window recommendations
- Technical gap identification
- Framework recommendations
**I cannot provide:**
- Pixel implementation code
- CAPI setup instructions
- MMM modeling
- Incrementality test design
**For better audits, provide:**
- Actual conversion counts from CRM
- Platform-reported conversions for same period
- Current technical setup details
- Sales cycle information
---
## Quality Checklist
Before delivering audit:
- [ ] All platforms assessed
- [ ] Windows compared across platforms
- [ ] Overcounting calculated
- [ ] Data loss estimated
- [ ] Technical gaps identified
- [ ] Model recommendation matches business
- [ ] Action plan is prioritized
- [ ] Source of truth established
ReadyAttribution Model Auditor
MarkdownUTF-8Verified